1,876 research outputs found

    Auralization of Air Vehicle Noise for Community Noise Assessment

    Get PDF
    This paper serves as an introduction to air vehicle noise auralization and documents the current state-of-the-art. Auralization of flyover noise considers the source, path, and receiver as part of a time marching simulation. Two approaches are offered; a time domain approach performs synthesis followed by propagation, while a frequency domain approach performs propagation followed by synthesis. Source noise description methods are offered for isolated and installed propulsion system and airframe noise sources for a wide range of air vehicles. Methods for synthesis of broadband, discrete tones, steady and unsteady periodic, and a periodic sources are presented, and propagation methods and receiver considerations are discussed. Auralizations applied to vehicles ranging from large transport aircraft to small unmanned aerial systems demonstrate current capabilities

    Psychoacoustic Test to Determine Sound Quality Metric Indicators of Rotorcraft Noise Annoyance

    Get PDF
    Noise certification metrics such as Effective Perceived Noise Level and Sound Exposure Level are used to ensure that helicopters meet regulations, but these metrics may not be good indicators of annoyance since noise complaints against helicopters persist. Sound quality (SQ) metrics, specifically fluctuation strength, tonality, impulsiveness, roughness, and sharpness, are explored to determine their relationship with annoyance. A psychoacoustic test was conducted at the NASA Langley Research Center Exterior Effects Room to assess annoyance to helicopter-like sounds over a range of SQ metric values. The amplitude, phase, and frequency of the AS350 helicopter main and tail rotor blade passage signal harmonics were manipulated to produce 105 unique helicopter-like sounds with prescribed values of SQ metrics. All sounds were set to roughly the same loudness level. These sounds were played to 40 subjects who rated each sound for annoyance. Analyses given in this paper point to which SQ metrics are important to the helicopter noise annoyance response

    Three-Dimensional Audio Client Library

    Get PDF
    The Three-Dimensional Audio Client Library (3DAudio library) is a group of software routines written to facilitate development of both stand-alone (audio only) and immersive virtual-reality application programs that utilize three-dimensional audio displays. The library is intended to enable the development of three-dimensional audio client application programs by use of a code base common to multiple audio server computers. The 3DAudio library calls vendor-specific audio client libraries and currently supports the AuSIM Gold-Server and Lake Huron audio servers. 3DAudio library routines contain common functions for (1) initiation and termination of a client/audio server session, (2) configuration-file input, (3) positioning functions, (4) coordinate transformations, (5) audio transport functions, (6) rendering functions, (7) debugging functions, and (8) event-list-sequencing functions. The 3DAudio software is written in the C++ programming language and currently operates under the Linux, IRIX, and Windows operating systems

    An Overview of Virtual Acoustic Simulation of Aircraft Flyover Noise

    Get PDF
    Methods for testing human subject response to aircraft flyover noise have greatly advanced in recent years as a result of advances in simulation technology. Capabilities have been developed which now allow subjects to be immersed both visually and aurally in a three-dimensional, virtual environment. While suitable for displaying recorded aircraft noise, the true potential is found when synthesizing aircraft flyover noise because it allows the flexibility and freedom to study sounds from aircraft not yet flown. A virtual acoustic simulation method is described which is built upon prediction-based source noise synthesis, engineering-based propagation modeling, and empirically-based receiver modeling. This source-path-receiver paradigm allows complete control over all aspects of flyover auralization. With this capability, it is now possible to assess human response to flyover noise by systematically evaluating source noise reductions within the context of a system level simulation. Examples of auralized flyover noise and movie clips representative of an immersive aircraft flyover environment are made in the presentation

    A Laboratory Method for Assessing Audibility and Localization of Rotorcraft Fly-In Noise

    Get PDF
    The low frequency content of rotorcraft noise allows it to be heard over great distances. This factor contributes to the disruption of natural quiet in national parks and wilderness areas, and can lead to annoyance in populated areas. Further, it can result in the sound being heard at greater distances compared to higher altitude fixed wing aircraft operations. Human response studies conducted in the field are challenging since test conditions are difficult to control. This paper presents a means of quantitatively determining the audibility and localization of rotorcraft fly-in noise, under a specified ambient noise condition, within a controlled laboratory environment. It is demonstrated using synthetic fly-in noise of a light utility helicopter. The method is shown to resolve differences in audibility distances due to different ground impedances, propagation modeling methods, and directivity angles. Further, it demonstrates the efficacy of an accelerated test method

    On the Use of Acoustic Wind Tunnel Data for the Simulation of sUAS Flyover Noise

    Get PDF
    Acoustic measurements of a small, unmanned aerial system were recently acquired during a ground test campaign. The purposes of the ground test, conducted in the NASA Langley Low Speed Aeroacoustic Wind Tunnel, were to characterize the source noise in terms of its tonal and broadband content, and to identify conditions under which multirotor and rotor-airframe interactions are present. The focus of this work is to assess the effectiveness of using those data for the simulation of flyover noise at a ground observer. The assessment is made at two levels of fidelity using different sets of tools. In the first, 1/3 octave band spectra at a ground receiver will be simulated in a frequency domain approach using the NASA Aircraft NOise Prediction Program. In the second, the pressure time history at a ground receiver is simulated in a time domain approach using the NASA Auralization Framework. Various objective measures are used to verify the simulation process. Acoustic wind tunnel and flight test data are used to gain insight into perceptually important effects

    Nonlinear Reduced-Order Simulation Using An Experimentally Guided Modal Basis

    Get PDF
    A procedure is developed for using nonlinear experimental response data to guide the modal basis selection in a nonlinear reduced-order simulation. The procedure entails using nonlinear acceleration response data to first identify proper orthogonal modes. Special consideration is given to cases in which some of the desired response data is unavailable. Bases consisting of linear normal modes are then selected to best represent the experimentally determined transverse proper orthogonal modes and either experimentally determined inplane proper orthogonal modes or the special case of numerically computed in-plane companions. The bases are subsequently used in nonlinear modal reduction and dynamic response simulations. The experimental data used in this work is simulated to allow some practical considerations, such as the availability of in-plane response data and non-idealized test conditions, to be explored. Comparisons of the nonlinear reduced-order simulations are made with the surrogate experimental data to demonstrate the effectiveness of the approach

    Receiver-Based Auralization of Broadband Aircraft Flyover Noise Using the NASA Auralization Framework

    Get PDF
    The NASA Auralization Framework (NAF) consists of a set of dynamic link libraries (DLLs) to facilitate auralization of aircraft noise. Advanced capabilities for synthesis, propagation, and external interfaces are provided by the NAF Advanced Plugin Libraries (APL); a separate set of DLLs that are made accessible through the NAFs plugin architecture. In the typical time domain use case, the sound is first synthesized at the source location based on a source noise definition, and is then propagated in the time domain to a receiver on or near the ground. Alternatively, it may be desirable to synthesize the sound at the receiver, after it has been propagated in the frequency domain, e.g., when the source definition is inaccessible or when alternative propagation methods are needed. Receiver-based auralization requires three new developments in the NAF APL: a component plugin to interpolate the propagated noise spectra as a function of time for input to sound synthesis, and a path finder and path traversal plugin to calculate the effects of the differential propagation path length between the direct and ground reflected rays. This paper describes those developments and demonstrates their use in the auralization of broadband flyover noise

    Auralization of a Supersonic Business Jet Using Advanced Takeoff Procedures

    Get PDF
    Recent NASA studies of a supersonic business jet airplane indicated that advanced takeoff procedures could be used to reduce noise at the lateral sideline location to a level at which Chapter 4 noise certification requirements could be met. The studies were conducted with the NASA Aircraft Noise Prediction Program, using an analytical model of the airframe and its engines. The advanced procedure consists of a higher-speed climbout and a programmed thrust lapse in which the engine thrust is automatically and gradually reduced immediately after the runway obstacle is cleared. In this paper, the authors utilize the results of the most recent study as the basis of an auralization of the predicted noise. Modifications to the NASA Auralization Framework necessary for that process are described. The auralizations are used to demonstrate differences between standard and advanced takeoff pro ond those that may be observed through comparison of integrated noise metrics

    POD/MAC-Based Modal Basis Selection for a Reduced Order Nonlinear Response Analysis

    Get PDF
    A feasibility study was conducted to explore the applicability of a POD/MAC basis selection technique to a nonlinear structural response analysis. For the case studied the application of the POD/MAC technique resulted in a substantial improvement of the reduced order simulation when compared to a classic approach utilizing only low frequency modes present in the excitation bandwidth. Further studies are aimed to expand application of the presented technique to more complex structures including non-planar and two-dimensional configurations. For non-planar structures the separation of different displacement components may not be necessary or desirable
    corecore